Statistics – Role of a statistician, programming

Module 12 Topic 6

Role of Biostatistician

Defining Research Question

Reasonable & Worthwhile

Defining Hypothesis

- Null hypothesis H0
- Alternate hypothesis H1
- Based upon:
 - Study Design
 - Observed Differences
 - Incidence & prevalence of said condition/outcome

Planning of the study?

- Study Design
 - Superiority /Non-inferiority
 - Open /blind
 - Controlled /uncontrolled /Stratified
 - To Minimize bias
 - To enable appropriate data collection for analysis
- Sample Size

Appropriate

- Adequate to answer research question
- Sample size should be the minimum required to detect a desirable difference
- Larger size more precise estimates
- Funds? Time? Ethical issues?

Planning of the study (contd)

- Assessment parameters
 - Which?
 - Objective Vs Subjective
 - How often?
 - Frequency
 - How many?
 - Too many parameters Failure of conclusion

Randomization

- Random allocation of intervention
 - RCTs Gold standard in CTs
 - Randomization Crucial in RCTs
 - Stratified randomization
 - Block randomization
 - Randomization Code
 - Randomization Ratio
 - 1:1, 1:2, 1:3, 1:1:2
 - Serial assignment /chronological order
 - Web based central randomization

Data Collection

- Designing of CRF
 - Log
 - Visit-wise
 - Forward / Backward
 - Open / Closed
 - e-CRF / e-Data Capture [Web based trials]
- To <u>standardize</u> capture of relevant data
- To facilitate <u>efficient & complete</u> data recording, processing, analysis & reporting

Data entry in CRF

Minimum text

Use of strings

 Options for tick-mark answers Unambiguous

 Numerical data entry decimals **Emphasis** on

- Clinical Trial Database
 - Use of PC based software
 - FoxPro, Oracle, dBASE etc.
 - Single/Double/Triple data entry
 - Data retrieval

Data analysis

- Data Processing
 - Tests for normality, skewness & homogeneity of variances
 - Data arrangement
 - Use of PC Based software
- SAS, STATA, SPSS, NCSS, Add-ons (Excelstat, Analyze-IT)

Data Analysis

Test whether data fits into any of the known mathematical model:

"Goodness of Fit test"

Find out relation between two different aspects of one population (blood pressure & heart rate)

or

one aspect of 2 different populations (blood pressure in young and old)

If exists, nature of relation: Correlation analysis

Data Analysis

How close it is?

Given one set of values can we predict other?

:Regression analysis

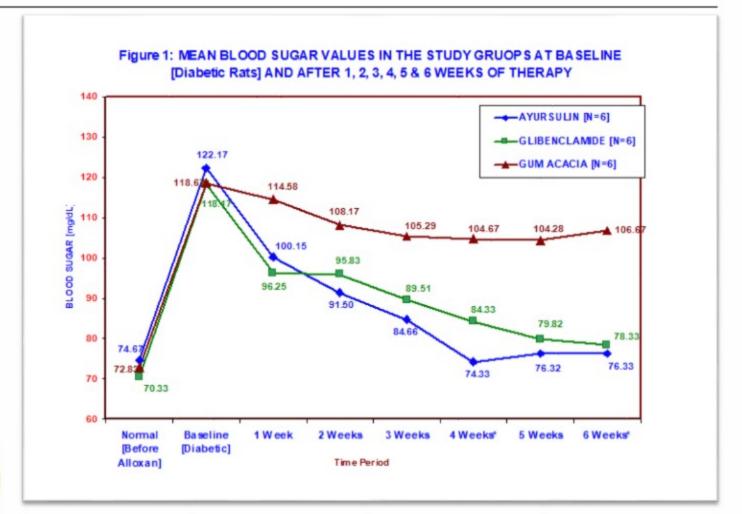
Establish confidence limit

If you repeat the study, how close the statistic calculated by you would lie wrt population parameter

Interpretation & Conclusions

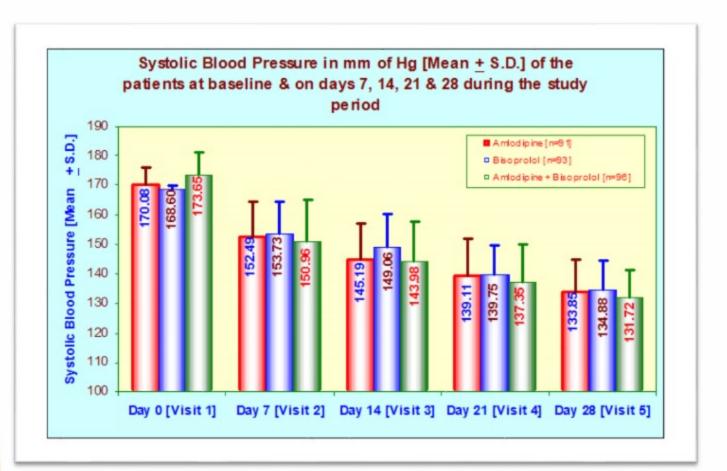
Statistical significance ≠ biological/ clinical significance
In-vitro significance ≠ in-vivo significance
To derive reasonable conclusions

Data Presentation

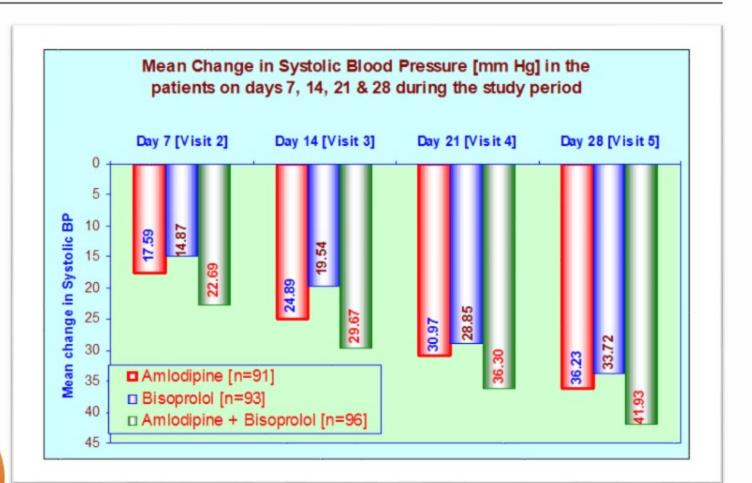

- Tabulation
 - Simple table
 - Frequency distribution table
- Charts & Diagrams
 - Qualitative data
 - .
 - .
 - .
 - Quantitative data

Histogram

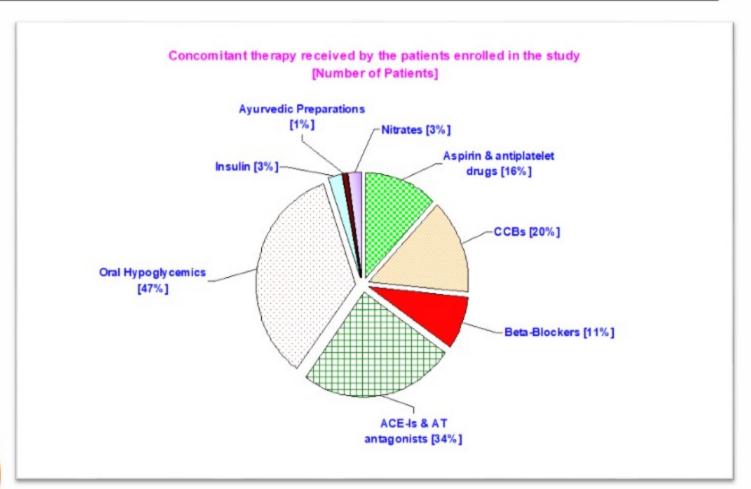
- -Freq. plygon
- -Line diagram
- -Frequency Curve
- Bar diagram
- Pie /sector diagram
- Scatter plot
- Box plot
- Pictogram

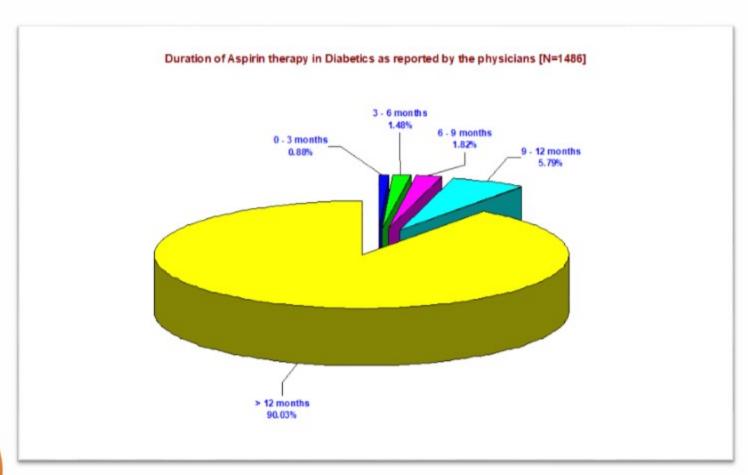


Line Diagram

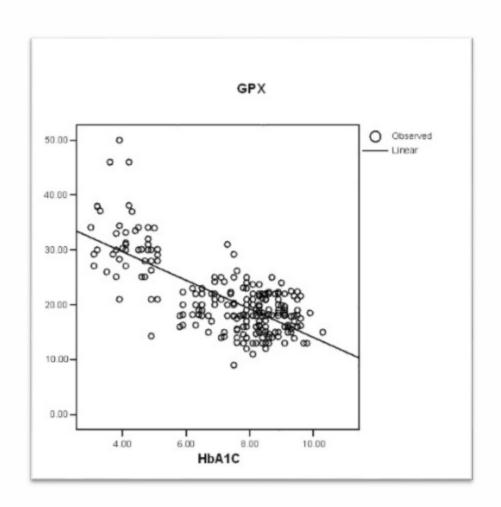


Multiple Bar Diagram





Pie Diagram



3-D Pie Diagram

Scatter Plot

Statistical Programming

- When a CRF is being annotated, statistical programmers map it to SDTM
- SDTM is Standard Data Tabulation Model
- He creates the final Analysis Data Sets
- He creates Dummy Tables Figures Listings
- He programmes the data to fall into these Tables
- All this is done during data base build stage
- Finally analysisand statistical report generation

Role of statistician vs trial stages

- Statistician has a role at various stages in a trial
- Initiation and data base build stage
 - Inputs in protocol creation
 - CRF creation
 - Dummy TFLs
 - Statistical analysis plan
- Trial conduct- programming for creation of ADS and TFLs
- Trial close Creation of ADS, TFLs, analysis and stats report

References

- Aggarwal YP, Statistical Methods, concepts, application, computation. Sterling publishers (1986)
- Varalakshmi V et al. Statistics Higher Secondary, First Year. Tamil Nadu Textbook Corporation 2005
- Langley R, Practical Stats. The Chauser press 1968
- Barkan H, Annals of Cardiac Anaesthesia (2015)18:74
- Dunn OJ, Clark VA, Basic stats, a primer for biomed sciences. 4th Ed, 2009, John Weiley and sons inc.
- Harris M, Taylor G. Medical Statistics made easy. 1st Ed, Martin Dunitz, 2003
- Krousel wood M, clinicials guide to stats part 1 The Ochsner Journal (2006) 6:2,68
- Kadam P ,Sample size calculation . International J of Ayurveda (2010) 1:55-57
- Fox N, Hunn A, MathewsN, Sampling and sample size calculation.
 The NIHR RDS EM / YH (2009)
- Available at http://www.biostathandbook.com/kruskalwallis.html
- Jaykaran. Journal of pharmaceutical negative results. (2010) 1:61
- NayakBK. HazraV. Indian J Ophthalmol. (2011) 59 (85–86).
- http://wise.cgu.edu/choosemod/test61.html

